Многие уже успешно повторили и давно используют проект лабораторного БП от Electronics-lab. Повторил его и я сделав несколько изменений в схеме блока питания. Трансформатор представляет собой тороид 400 Вт 4×12 В, в котором 2 обмотки соединены для источника питания, а другая используется для питания измерительных приборов. Если говорить о них, тут использовались 2 цифровых мультиметра, потому что они стоят всего 300 рублей за пару, и их достаточно для показа А/V. Они питаются от источника питания, схема которого основана на базовом включении LM317.
Список элементов схемы
- R1 = 2,2 кОм 1 Вт
- R2 = 82 Ом 1/4 Вт
- R3 = 220 Ом 1/4 Вт
- R4 = 4,7 кОм 1/4 Вт
- R5, R6, R13, R20, R21 = 10 кОм 1/4 Вт
- R7 = 0,47 Ом 5W
- R 8, R 11 = 27 кОм 1 / 4W
- R9, R19 = 2,2 кОм 1 / 4W
- R10 = 270 кОм 1 / 4W
- R 12, R 18 = 56KOhm 1 / 4W
- R14 = 1,5 кОм 1 / 4W
- R15 , R16 = 1 кОм 1/4 Вт
- R17 = 33 Ом 1/4 Вт
- R22 = 3,9 кОм 1/4 Вт
- RV1 = переменный 100 кОм
- P1, P2 = 10 кОм линейные
- C1 = 3300 мкФ / 50 В
- C2, C3 = 47 мкФ / 50 В
- C4 = 100 нФ
- C5 = 200 нФ
- C6 = керамика 100 пФ
- C7 = 10 мкФ / 50 В
- C8 = 330 пФ керамика
- C9 = 100 пФ керамика
- D1, D2, D3, D4 = 1N5402,3,4 диод 2 A — RAX GI837U
- D5, D6 = 1N4148
- D7, D8 = 5,6 В стабилитрон
- D9, D10 = 1N4148
- D11 = 1N4001 диод 1 A
- Q1 = BC548 или BC547
- Q2 = 2N2219
- Q3 = BC557 или BC327
- Q4 = 2N3055 силовой транзистор
- U1, U2, U3 = TL081
- D12 = светодиод
Методы измерения напряжения и тока выхода в таком источнике питания зависят от ваших возможностей и пожеланий. Когда дело доходит до напряжения, следует использовать любой вольтметр и подключать его к выходным клеммам устройства. Измерение тока в данном случае проводилось с помощью светодиодной линейки и микросхемы LM3915.
Чтобы иметь возможность измерять ток таким способом, напряжение возникающее на резисторе R7 должно быть первоначально усилено, поскольку LM3915 требует более высоких напряжений для измерения (на резисторе R7 при 3 A ток будет около 1,5 В). Усилить это напряжение надо с помощью операционного усилителя (по схеме неинвертирующего усилителя), и из-за того, что источник питания также имеет отрицательные напряжения, придется делать дополнительный канал питания.
Лучше питать дополнительный операционный усилитель так же, как U3. Усиливая напряжение с резистора R7, можно соблазниться регулируемым усилением (простая замена 2 или 3 резисторов с помощью переключателя), благодаря которому получим различные диапазоны измерения тока — полезные при низких токах. Также при настройке LM3915 может быть линейка или точка — по желанию.
Регулируемый блок питания своими руками
Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.
Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ
Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.
Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.
А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.
Схема регулируемого блока питания с защитой от КЗ на LM317
Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.
Печатная плата регулируемого блока питания на регуляторе напряжения LM317
Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.
Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.
А теперь самое интересное… Испытания блока питания на прочность.
Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.
Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.
Схема подключения вентилятора к блоку питания
Что будет с блоком питания при коротком замыкании?
При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.
Радиодетали для сборки регулируемого блока питания на LM317
- Стабилизатор напряжения LM317
- Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
- Конденсатор С1 4700mf 50V
- Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
- Переменный резистор Р1 5К
- Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n
Печатная плата для сборки
Плата лабораторного БП — вид деталей
Что касается регулирования ограничения тока, для охвата диапазона до 5 А необходимо изменить значение резистора R18. Используя потенциометры со значениями, такими как перечисленные в списке компонентов, для 5 А резистор R18 должен быть заменен на значение около 33 кОм. На это может влиять разброс параметров стабилитрона который задает напряжение на выходе U1. Конечно следует использовать и более мощный трансформатор.
Печатные платы должны быть соединены с помощью двухрядных угловых штырьков. Большая плата имеет все элементы на исходной, кроме 4-х выпрямительных диодов (D1-D4). Тут использовался мостовой выпрямитель прикрученный к радиатору. На плате имеются только монтажные отверстия для соединения диодного моста с помощью проволочных секций.
Рисунок дорожек (сторона пайки) выполнен в черном цвете и может быть использован в качестве маски для повторения платы. Далее показано расположение элементов, а дорожки (вид через плату) изображены серым цветом. Элементы отмечены синим цветом и соответствующие описания находятся внутри или рядом с ними. Перемычки отмечены красным, а зеленые цифры рядом с контактными площадками соответствуют номерам на схеме и используются для подключения трансформатора, потенциометров, транзистора Q4 и выходных клемм источника питания. Меньшая плата предназначена для 2 транзисторов T1 и T2 BD249 (вместо оригинального транзистора Q4).
В описании этого источника питания трансформатор должен иметь напряжение 24 В, но есть некоторые сомнения по поводу этого напряжения. Схема также выдает -5 В для питания операционных усилителей. Выпрямленное напряжение от трансформатора даст нам около 36 В, а эти -5 В в сумме дадут более 40 В для операционных усилителей (U2 и U3). Параметры этих микросхем не предусматривают такое высокое напряжение, и даже если они сгорят — плохо когда радиоэлементы работают на пределе своих возможностей. Советуем использовать трансформатор с более низким напряжением — около 21 В, что означает максимальное выходное напряжение составит 28 В.
Также проведена замена моста выпрямителя и отказ от отдельных диодов, используемых в пользу 8A-200V KBU8D. Следующие изменения — это конденсатор C1 4400/100 В, резистор R1 на 5 Вт, дополнительные операционные усилители. Использовались LM318 и Q2 транзистор — KD503, для которого установлен охлаждающий вентилятор, что видно на фотографиях. Несмотря на использование пластикового корпуса, радиатор плюс вентилятор достаточны для хорошего отвода тепла. Если речь идет о вентиляторе, он включается в зависимости от температуры. Блок питания работает действительно отлично. Стоимость сборки не превышает 1000 рублей, из которых самый дорогой элемент — трансформатор.
Цифровые измерители DT-832 играют роль амперметра и вольтметра. Это кажется самым простым решением и, конечно же, дешевым (как вариант — купить LED модуль).
Естественно блок питания имеет защиту и ограничение по току. Можно увеличить выходной ток до 5 А, необходимо лишь заменить несколько элементов (увеличить их мощность), дополнительно улучшить охлаждение на транзисторе или параллельно подключить несколько так, чтобы регулирование стало возможным до 5 А.
Если не хотите ставить кулер — ставьте переключение обмоток для снижения мощности на силовом транзисторе. При 5 В и 3 А например слишком большая мощность высвобождается транзистором в воздух, поэтому переключение обмоток спасает от перегрева.
Лабораторный блок питания своими руками 0-30 В
Многие уже успешно повторили и давно используют проект лабораторного БП от Electronics-lab. Повторил его и я сделав несколько изменений в схеме блока питания. Трансформатор представляет собой тороид 400 Вт 4×12 В, в котором 2 обмотки соединены для источника питания, а другая используется для питания измерительных приборов. Если говорить о них, тут использовались 2 цифровых мультиметра, потому что они стоят всего 300 рублей за пару, и их достаточно для показа А/V. Они питаются от источника питания, схема которого основана на базовом включении LM317.
- Схема БП с регулировкой U / I
- Список элементов схемы
- Печатная плата для сборки
- Схема подключения охлаждения